If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x-18=0
a = 4; b = -18; c = -18;
Δ = b2-4ac
Δ = -182-4·4·(-18)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{17}}{2*4}=\frac{18-6\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{17}}{2*4}=\frac{18+6\sqrt{17}}{8} $
| c-4*3+7=22 | | x=4.514285714 | | -10x^2-19x-6=0 | | 6−2t=2 | | -7w+11=25 | | -7w+11=35 | | -19x-6=10x^2 | | 3x-3÷6=3 | | -6s-19=47 | | 1/4x+1/7x=11 | | -24=1/2x | | 10x^2=-19x-6 | | 3x-3÷6=-1 | | W=6w-w+4w | | 1/4x+1/7=11 | | 10x^2=-19-6 | | 5(x+5)=4(x–8) | | 1+22x=1+22x | | 5(x+5)=4(x–8) | | 1+22x=1 | | 31/2x+2=x+3 | | 4k-k-k=8 | | 11x-21=45 | | 3/2x+2=x+3 | | 5y-7=5 | | 3(x+15)=57 | | 5(9+1)=45x−8 | | 19q-11q-5q-2q+2q=18 | | (5-0.5y)-3y=-2 | | 3−-4p=15 | | (3140000)x(A)=3962948 | | 12x+1=12x+1 |